It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Ingestion of alcoholic beverages is a known trigger of migraine attacks. However, whether and how ethanol exerts its pro-migraine action remains poorly known. Ethanol stimulates the transient receptor potential vanilloid 1 (TRPV1) channel, and its dehydrogenized metabolite, acetaldehyde, is a known TRP ankyrin 1 (TRPA1) agonist.
Methods
Periorbital mechanical allodynia following systemic ethanol and acetaldehyde was investigated in mice after TRPA1 and TRPV1 pharmacological antagonism and global genetic deletion. Mice with selective silencing of the receptor activated modifying protein 1 (RAMP1), a component of the calcitonin gene-related peptide (CGRP) receptor, in Schwann cells or TRPA1 in dorsal root ganglion (DRG) neurons or Schwann cells, were used after systemic ethanol and acetaldehyde.
Results
We show in mice that intragastric ethanol administration evokes a sustained periorbital mechanical allodynia that is attenuated by systemic or local alcohol dehydrogenase inhibition, and TRPA1, but not TRPV1, global deletion, thus indicating the implication of acetaldehyde. Systemic (intraperitoneal) acetaldehyde administration also evokes periorbital mechanical allodynia. Importantly, periorbital mechanical allodynia by both ethanol and acetaldehyde is abrogated by pretreatment with the CGRP receptor antagonist, olcegepant, and a selective silencing of RAMP1 in Schwann cells. Periorbital mechanical allodynia by ethanol and acetaldehyde is also attenuated by cyclic AMP, protein kinase A, and nitric oxide inhibition and pretreatment with an antioxidant. Moreover, selective genetic silencing of TRPA1 in Schwann cells or DRG neurons attenuated periorbital mechanical allodynia by ethanol or acetaldehyde.
Conclusions
Results suggest that, in mice, periorbital mechanical allodynia, a response that mimics cutaneous allodynia reported during migraine attacks, is elicited by ethanol via the systemic production of acetaldehyde that, by releasing CGRP, engages the CGRP receptor in Schwann cells. The ensuing cascade of intracellular events results in a Schwann cell TRPA1-dependent oxidative stress generation that eventually targets neuronal TRPA1 to signal allodynia from the periorbital area.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer