Abstract
Background
The feed intake of sows during lactation is often lower than their needs. High-fiber feed is usually used during gestation to increase the voluntary feed intake of sows during lactation. However, the mechanism underlying the effect of bulky diets on the appetites of sows during lactation have not been fully clarified. The current study was conducted to determine whether a high-fiber diet during gestation improves lactational feed intake (LFI) of sows by modulating gut microbiota.
Methods
We selected an appropriate high-fiber diet during gestation and utilized the fecal microbial transplantation (FMT) method to conduct research on the role of the gut microbiota in feed intake regulation of sows during lactation, as follows: high-fiber (HF) diet during gestation (n = 23), low-fiber (LF) diet during gestation (n = 23), and low-fiber diet + HF-FMT (LFM) during gestation (n = 23).
Results
Compared with the LF, sows in the HF and LFM groups had a higher LFI, while the sows also had higher peptide tyrosine tyrosine and glucagon-like peptide 1 on d 110 of gestation (G110 d). The litter weight gain of piglets during lactation and weaning weight of piglets from LFM group were higher than LF group. Sows given a HF diet had lower Proteobacteria, especially Escherichia-Shigella, on G110 d and higher Lactobacillus, especially Lactobacillus_mucosae_LM1 and Lactobacillus_amylovorus, on d 7 of lactation (L7 d). The abundance of Escherichia-Shigella was reduced by HF-FMT in numerically compared with the LF. In addition, HF and HF-FMT both decreased the perinatal concentrations of proinflammatory factors, such as endotoxin (ET), lipocalin-2 (LCN-2), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β). The concentration of ET and LCN-2 and the abundance of Proteobacteria and Escherichia-Shigella were negatively correlated with the LFI of sows.
Conclusion
The high abundance of Proteobacteria, especially Escherichia-Shigella of LF sows in late gestation, led to increased endotoxin levels, which result in inflammatory responses and adverse effects on the LFI of sows. Adding HF during gestation reverses this process by increasing the abundance of Lactobacillus, especially Lactobacillus_mucosae_LM1 and Lactobacillus_amylovorus.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





