Abstract

Tumors are comprised of a multitude of cell types spanning different microenvironments. Mass spectrometry imaging (MSI) has the potential to identify metabolic patterns within the tumor ecosystem and surrounding tissues, but conventional workflows have not yet fully integrated the breadth of experimental techniques in metabolomics. Here, we combine MSI, stable isotope labeling, and a spatial variant of Isotopologue Spectral Analysis to map distributions of metabolite abundances, nutrient contributions, and metabolic turnover fluxes across the brains of mice harboring GL261 glioma, a widely used model for glioblastoma. When integrated with MSI, the combination of ion mobility, desorption electrospray ionization, and matrix assisted laser desorption ionization reveals alterations in multiple anabolic pathways. De novo fatty acid synthesis flux is increased by approximately 3-fold in glioma relative to surrounding healthy tissue. Fatty acid elongation flux is elevated even higher at 8-fold relative to surrounding healthy tissue and highlights the importance of elongase activity in glioma.

Isotopologue spectral analysis was originally designed to assess metabolic fluxes from bulk samples. Here, the authors adapted this approach to infer fluxes from discrete regions in tissue by using mass spectrometry imaging, showing increased fatty acid synthesis flux in brain tumors of mice.

Details

Title
Using mass spectrometry imaging to map fluxes quantitatively in the tumor ecosystem
Author
Schwaiger-Haber, Michaela 1   VIAFID ORCID Logo  ; Stancliffe, Ethan 1   VIAFID ORCID Logo  ; Anbukumar, Dhanalakshmi S. 1   VIAFID ORCID Logo  ; Sells, Blake 1   VIAFID ORCID Logo  ; Yi, Jia 1 ; Cho, Kevin 1   VIAFID ORCID Logo  ; Adkins-Travis, Kayla 1   VIAFID ORCID Logo  ; Chheda, Milan G. 2   VIAFID ORCID Logo  ; Shriver, Leah P. 1 ; Patti, Gary J. 3   VIAFID ORCID Logo 

 Washington University in St. Louis, Department of Chemistry, St. Louis, USA (GRID:grid.4367.6) (ISNI:0000 0001 2355 7002); Washington University in St. Louis, Center for Metabolomics and Isotope Tracing, St. Louis, USA (GRID:grid.4367.6) (ISNI:0000 0001 2355 7002); Washington University in St. Louis, Department of Medicine, St. Louis, USA (GRID:grid.4367.6) (ISNI:0000 0001 2355 7002) 
 Washington University in St. Louis, Department of Medicine, St. Louis, USA (GRID:grid.4367.6) (ISNI:0000 0001 2355 7002); Washington University in St. Louis, Department of Neurology, St. Louis, USA (GRID:grid.4367.6) (ISNI:0000 0001 2355 7002); Washington University in St. Louis, Siteman Cancer Center, St. Louis, USA (GRID:grid.4367.6) (ISNI:0000 0001 2355 7002) 
 Washington University in St. Louis, Department of Chemistry, St. Louis, USA (GRID:grid.4367.6) (ISNI:0000 0001 2355 7002); Washington University in St. Louis, Center for Metabolomics and Isotope Tracing, St. Louis, USA (GRID:grid.4367.6) (ISNI:0000 0001 2355 7002); Washington University in St. Louis, Department of Medicine, St. Louis, USA (GRID:grid.4367.6) (ISNI:0000 0001 2355 7002); Washington University in St. Louis, Siteman Cancer Center, St. Louis, USA (GRID:grid.4367.6) (ISNI:0000 0001 2355 7002) 
Pages
2876
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2815861405
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.