Full text

Turn on search term navigation

© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background: Aging-related cognitive decline is associated with brain structural changes and synaptic loss. However, the molecular mechanisms of cognitive decline during normal aging remain elusive. Results: Using the GTEx transcriptomic data from 13 brain regions, we identified aging-associated molecular alterations and cell-type compositions in males and females. We further constructed gene co-expression networks and identified aging-associated modules and key regulators shared by both sexes and those specific to males or females. A few brain regions such as the hippocampus and hypothalamus show specific vulnerability in males, while the cerebellar hemisphere and anterior cingulate cortex regions manifest greater vulnerability in females than in males. Immune response genes are positively correlated with age, whereas those involved in neurogenesis are negatively correlated with age. Aging-associated genes identified in the hippocampus and the frontal cortex are significantly enriched for gene signatures implicated in Alzheimer’s disease (AD) pathogenesis. In the hippocampus, a male-specific co-expression module is driven by aging-decreasing key synaptic signaling regulators VSNL1, INA, CHN1 and KCNH1; while in the cortex, a female-specific module is associated with neuron projection morphogenesis, which is driven by key regulators SRPK2, REPS2 and FXYD1. In the cerebellar hemisphere, a myelination-associated module shared by males and females is driven by key regulators such as MOG, ENPP2, MYRF, ANLN, MAG and PLP1 implicated in the development of AD and other neurodegenerative diseases. Conclusions: This integrative network biology study systematically identifies molecular signatures and networks underlying brain regional vulnerability to aging in males and females. The findings pave the way for understanding the molecular mechanisms of gender differences in developing neurodegenerative diseases such as AD.

Details

Title
Molecular differences in brain regional vulnerability to aging between males and females
Author
Zhou, Xianxiao; Cao, Jiqing; Zhu, Li; Farrell, Kurt; Wang, Minghui; Guo, Lei; Yang, Jialiang; McKenzie, Andrew; Crary, John F; Cai, Dongming; Tu, Zhidong; Zhang, Bin
Section
ORIGINAL RESEARCH article
Publication year
2023
Publication date
May 22, 2023
Publisher
Frontiers Research Foundation
ISSN
16634365
e-ISSN
16634365
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2816672062
Copyright
© 2023. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.