It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The spectral efficiency (SE) can approximately double when using full-duplex (FD) multiuser MIMO communications. However, there are difficulties because of multiuser interferences, self-interference (SI), and co-channel interference (CCI). To improve the SE of the downlink (DL), this paper proposes CCI-aware enhancement to SLNR (signal-to-leakage-and-noise-ratio) signal-to-leakage-and-noise-ratio (SLNR). It considers a suppressing filter at the receiver to cancel the interferences again designing a beamformer based on CCI-plus-noise covariance matrices for every user at the transmitting side. Additionally, we propose an improvement in the SLNR method by using SI-plus-noise covariance matrices to design uplink (UL) beamformers. Unlike zero-forcing and block-diagonalization, the SLNR approach serves numerous antennas at users and BS (base station). The total SE of the communication yielded using the optimized precoder, i.e., obtained from the SLNR-based precoding. To achieve maximum energy efficiency (EE), we use a power consumption model. Simulation results confirm that full-duplex performs well compared to half-duplex (HD) when the number of antennas at every user in uplink as well downlink channels grow, for all Rician factors, for slight powers of the CCI and SI, and a limited number of antennas at the BS. With the proposed scheme for given transmit power and circuit power, we demonstrate that FD has a higher EE than HD.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Chosun University, Department of Information and Communication Engineering, Gwangju, South Korea (GRID:grid.254187.d) (ISNI:0000 0000 9475 8840)
2 Harbin Institute of Technology, School of Electronics and Information Engineering, Harbin, China (GRID:grid.19373.3f) (ISNI:0000 0001 0193 3564)