It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
SLAM technology is more and more integrated with other sensors for indoor and outdoor seamless navigation. This research topic is very active in particular on image matching with deep learning local features, keyframe selection approaches, or tests on new IMU and GNSS solutions. Integrating and testing new methodologies on other widely used SLAM implementations, such as ORB-SLAM, can be not a trivial task. Therefore, we propose an extension of COLMAP to be used in real-time as a feature-based Visual-SLAM that can be also coupled with other sensors. COLMAP has been chosen due to its modularity and the large community that assures the continuity of the repository. The paper presents a pipeline mainly thought for real-time evaluation of learning-based tie points and new SLAM features, that works with both monocular, stereo and multi-camera systems. It is also shown an example of keyframe selection algorithm based on deep learning local features, and a simple example of IMU integration. The code is available on the GitHub repository https://github.com/3DOM-FBK/COLMAP_SLAM.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy; 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy; Dept. of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento, Italy
2 Dept. of Civil and Environmental Engineering (DICA), Politecnico di Milano, Milan, Italy; Dept. of Civil and Environmental Engineering (DICA), Politecnico di Milano, Milan, Italy
3 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy; 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy
4 Dept. of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento, Italy; Dept. of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento, Italy