It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In case of disconnection of generator from the network and failure of the governor, the rotational speed of the rotor rapidly increases and achieves maximum value, called the runaway speed. Prediction of the runaway speed at the stage of runner design would allow to select a runner considering this characteristic. Given in this paper is the numerical prediction of the runaway speed for a Kaplan turbine. Two approaches for numerical simulation were discussed. In the first one, the flow in the turbine flow passage was simulated using 3-D RANS equations of incompressible fluid using k-ε turbulence model. In the second approach, cavitation phenomena were taken into account using two-phase Zwart-Gerber-Belamri (ZGB) cavitation model. CFD calculations were carried out with using CADRUN flow solver. When setting the boundary conditions, the turbine head, being the difference of energies in the inlet and outlet cross-sections, is pre-set as a constant value, while the discharge and the runner torque are determined in the process of computation. The computed runaway speed is compared to that obtained in the model tests. It is shown that the numerical prediction of the runaway speed using the cavitation model achieves better matching with the experimental data.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer