It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Renewable energy management in smart grids is a challenging problem due to the uncertainty and variability of renewable energy sources. To improve the efficiency and reliability of renewable energy utilization, various optimization techniques have been proposed. In this paper propose an approach based on the Extreme Learning Machine (ELM) algorithm with Particle Swarm Optimization (PSO) for optimizing renewable energy management in smart grids. The ELM algorithm is used to model and predict renewable energy generation, while the PSO algorithm is used to optimize the parameters of the ELM algorithm. The proposed approach is evaluated on a dataset of solar energy production and compared with other optimization techniques. The results show that the ELM-PSO approach can improve the accuracy of renewable energy predictions and reduce energy costs in smart grids. The proposed approach can be used in various renewable energy systems, such as wind turbines, solar panels, and hydroelectric power plants, to improve the efficiency and reliability of renewable energy utilization.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer