Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The stability of geogrid-reinforced soil structure is closely related to the interface characteristics between geogrid and soil. However, the creep behavior of the soil–geogrid interface is still unrevealed. In this study, using a modified stress-controlled pullout device, influence of the normal pressure, dry density, and water content on creep behavior of interface of compacted loess and high-density polyethylene (HDPE) geogrid is investigated. A three-parameter empirical model and a Merchant element model were established through fitting analysis. Analysis results show that the normal pressure, dry density, and water content have significant effects on the creep shear displacement of the reinforced soil interface. Under the same pullout level, creep displacement of the interface increases with the increase of water content and decreases with the increase of dry density and normal pressure. Both the three-parameter empirical model and Merchant element model can describe the creep characteristics of the reinforced soil interface. The Merchant model is more accurate in the early stage, while the three-parameter empirical model is more suitable for predicting the long-term creep deformation of the interface of compacted loess and geogrid.

Details

Title
Experimental Research on the Creep Behavior of the Interface of Compacted Loess and High-Density Polyethylene Geogrid
Author
Yi-Li, Yuan 1 ; Chang-Ming, Hu 1 ; Xu, Jian 1 ; Yuan Mei 1 ; Fang-Fang, Wang 1 ; Wang, Ge 2 

 School of Civil Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering, Xi’an 710055, China 
 School of Civil Engineering, Xi’an University of Architecture & Technology, Xi’an 710055, China 
First page
1353
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819413231
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.