Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this work, we modified a dynamical system that addresses COVID-19 infection under a fractal-fractional-order derivative. The model investigates the psychological effects of the disease on humans. We establish global and local stability results for the model under the aforementioned derivative. Additionally, we compute the fundamental reproduction number, which helps predict the transmission of the disease in the community. Using the Carlos Castillo-Chavez method, we derive some adequate results about the bifurcation analysis of the proposed model. We also investigate sensitivity analysis to the given model using the criteria of Chitnis and his co-authors. Furthermore, we formulate the characterization of optimal control strategies by utilizing Pontryagin’s maximum principle. We simulate the model for different fractal-fractional orders subject to various parameter values using Adam Bashforth’s numerical method. All numerical findings are presented graphically.

Details

Title
Mathematical Analysis of Fractal-Fractional Mathematical Model of COVID-19
Author
Muhammad Sinan 1   VIAFID ORCID Logo  ; Nadiyah Hussain Alharthi 2   VIAFID ORCID Logo 

 School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China 
 Department of Mathematics and Statistics, College of Science Imam Mohammad Ibn Saud Islamic University, P.O. Box 90950, Riyadh 11623, Saudi Arabia; [email protected] 
First page
358
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
25043110
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819444475
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.