Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Genome compaction is one of the important subject areas for understanding the mechanisms regulating genes’ expression and DNA replication and repair. The basic unit of DNA compaction in the eukaryotic cell is the nucleosome. The main chromatin proteins responsible for DNA compaction have already been identified, but the regulation of chromatin architecture is still extensively studied. Several authors have shown an interaction of ARTD proteins with nucleosomes and proposed that there are changes in the nucleosomes’ structure as a result. In the ARTD family, only PARP1, PARP2, and PARP3 participate in the DNA damage response. Damaged DNA stimulates activation of these PARPs, which use NAD+ as a substrate. DNA repair and chromatin compaction need precise regulation with close coordination between them. In this work, we studied the interactions of these three PARPs with nucleosomes by atomic force microscopy, which is a powerful method allowing for direct measurements of geometric characteristics of single molecules. Using this method, we evaluated perturbations in the structure of single nucleosomes after the binding of a PARP. We demonstrated here that PARP3 significantly alters the geometry of nucleosomes, possibly indicating a new function of PARP3 in chromatin compaction regulation.

Details

Title
PARP3 Affects Nucleosome Compaction Regulation
Author
Ukraintsev, Alexander  VIAFID ORCID Logo  ; Kutuzov, Mikhail  VIAFID ORCID Logo  ; Belousova, Ekaterina  VIAFID ORCID Logo  ; Joyeau, Marie; Golyshev, Victor  VIAFID ORCID Logo  ; Lomzov, Alexander  VIAFID ORCID Logo  ; Lavrik, Olga  VIAFID ORCID Logo 
First page
9042
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819457704
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.