Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Nowadays, there is great concern about obtaining clean energy. Governments around the world are boosting renewable energy resources. Oceans provide abundant renewable energy resources, including tidal, wave, and current energy. It seems that ocean currents are one of the most promising ways to obtain energy from the oceans. The goal of this paper is to assess the hydrokinetic power potential in three different areas of the Spanish coast using a novel turbine design, named the fin-ring turbine. The patented turbine was previously power tested in 2014 in the Gulf of Mexico and numerically validated in the literature. A three-dimensional computational fluid dynamics (CFD) simulation of the novel current turbine is presented, including mesh sensitivity and turbulence studies. The turbine’s performance represented in TSR-Cp is discussed. The turbine was simulated in different regions with several current speeds, focusing on the Spanish coast. The results are very promising, with upper limit power coefficients of 37.5%, and 36.5% as a lower limit. Also, the comparisons with power test data available in the literature show very satisfactory agreement. The results highlight the superiority of the turbine in lower currents and present the suitability of the turbine’s applicability.

Details

Title
Hydrokinetic Power Potential in Spanish Coasts Using a Novel Turbine Design
Author
Ibrahim, Mahmoud I 1   VIAFID ORCID Logo  ; Legaz, María José 2 

 Department of Naval Architecture and Marine Engineering, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt or [email protected]; Laboratório de Sistemas e Tecnologia Subaquática (LSTS), Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal 
 Department of Applied Physics and Naval Technology, Faculty of Naval and Ocean Engineering, Technical University of Cartagena, 30203 Cartagena, Spain 
First page
942
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819460512
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.