Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Ceramic 3D printing is a promising technology that overcomes the limitations of traditional ceramic molding. It offers advantages such as refined models, reduced mold manufacturing costs, simplified processes, and automatic operation, which have attracted a growing number of researchers. However, current research tends to focus more on the molding process and print molding quality rather than exploring printing parameters in detail. In this study, we successfully prepared a large-size ceramic blank using screw extrusion stacking printing technology. Subsequent glazing and sintering processes were used to create complex ceramic handicrafts. Additionally, we used modeling and simulation technology to explore the fluid model printed by the printing nozzle at different flow rates. We adjusted two core parameters that affect the printing speed separately: three feed rates were set to be 0.001 m/s, 0.005 m/s, and 0.010 m/s, and three screw speeds were set to be 0.5 r/s, 1.5 r/s, and 2.5 r/s. Through a comparative analysis, we were able to simulate the printing exit speed, which ranged from 0.0751 m/s to 0.6828 m/s. It is evident that these two parameters have a significant impact on the printing exit speed. Our findings show that the extrusion velocity of clay is approximately 700 times faster than the inlet velocity at an inlet velocity of 0.001–0.010 m/s. Furthermore, the screw speed is influenced by the inlet velocity. Overall, our study sheds light on the importance of exploring printing parameters in ceramic 3D printing. By gaining a deeper understanding of the printing process, we can optimize printing parameters and further improve the quality of ceramic 3D printing.

Details

Title
Three-Dimensional Printing of Large Ceramic Products and Process Simulation
Author
Lin, Tao 1 ; Zhao, Zhihao 2   VIAFID ORCID Logo  ; Wang, Tao 3 ; Ye-Tang, Pan 4   VIAFID ORCID Logo 

 National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China; [email protected]; School of Materials Science & Engineering, Tsinghua University, Beijing 100084, China; [email protected] 
 School of Materials Science & Engineering, Tsinghua University, Beijing 100084, China; [email protected] 
 Beijing Institute of Fashion Technology, Fashion Accessory Art and Engineering College, Beijing 100029, China; [email protected] 
 National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China; [email protected] 
First page
3815
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819465214
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.