Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Naphthoquinones are a valuable source of secondary metabolites that are well known for their dye properties since ancient times. A wide range of biological activities have been described highlighting their cytotoxic activity, gaining the attention of researchers in recent years. In addition, it is also worth mentioning that many anticancer drugs possess a naphthoquinone backbone in their structure. Considering this background, the work described herein reports the evaluation of the cytotoxicity of different acyl and alkyl derivatives from juglone and lawsone that showed the best activity results from a etiolated wheat coleoptile bioassay. This bioassay is rapid, highly sensitive to a wide spectrum of activities, and is a powerful tool for detecting biologically active natural products. A preliminary cell viability bioassay was performed on cervix carcinoma (HeLa) cells for 24 h. The most promising compounds were further tested for apoptosis on different tumoral (IGROV-1 and SK-MEL-28) and non-tumoral (HEK-293) cell lines by flow cytometry. Results reveal that derivatives from lawsone (particularly derivative 4) were more cytotoxic on tumoral than in non-tumoral cells, showing similar results to those obtained with of etoposide, which is used as a positive control for apoptotic cell death. These findings encourage further studies on the development of new anticancer drugs for more directed therapies and reduced side effects with naphthoquinone skeleton.

Details

Title
Biological Activity of Naphthoquinones Derivatives in the Search of Anticancer Lead Compounds
Author
Durán, Alexandra G 1   VIAFID ORCID Logo  ; Chinchilla, Nuria 1   VIAFID ORCID Logo  ; Simonet, Ana M 1   VIAFID ORCID Logo  ; Gutiérrez, M Teresa 2   VIAFID ORCID Logo  ; Bolívar, Jorge 2   VIAFID ORCID Logo  ; Valdivia, Manuel M 2 ; Molinillo, José M G 1   VIAFID ORCID Logo  ; Macías, Francisco A 1   VIAFID ORCID Logo 

 Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules (INBIO), Campus de Excelencia Internacional (ceiA3), School of Science, University of Cadiz, 11510 Puerto Real, Cádiz, Spain; [email protected] (A.G.D.); [email protected] (N.C.); [email protected] (A.M.S.); [email protected] (J.M.G.M.) 
 Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Institute of Biomolecules (INBIO), University of Cádiz, República Saharaui 7, 11510 Puerto Real, Cádiz, Spain; [email protected] (M.T.G.); [email protected] (J.B.); [email protected] (M.M.V.) 
First page
348
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20726651
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819483093
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.