Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A solid-phase extraction (SPE) process, followed by an HPLC-DAD method, was developed and validated to quantify short-chain fatty acids (SCFAs) and applied to analyze chicken feces samples. This study aimed to report the use of the STRATATM-X-A 96 Well Plate SPE cartridge method as the first step in quantifying SCFAs. A stationary reverse-phase Luna Omega C18 column kept at 40 °C was used, with a gradient elution mobile phase (H2SO4 and Acetonitrile, 98:2), a flow rate of 1.2 mL/min, and detection at 210 nm. A mixture of acetic, propionic, and butyric acid was used as thestandard. The method showed a linear relationship, with a coefficient of determination of R2 = 0.9987, R2 = 0.9985, and R2 = 0.9966 for acetic, propionic, and butyric acid, respectively. Concerning sensitivity, an LOD and LOQ of 0.14, 0.14, 0.14 mg/mL and 0.44, 0.45, 0.43 mg/mL were obtained for acetic, propionic, and butyric acid, respectively. According to the sample analysis, the accuracy was 76.05, 95.60, and 81.56% for acetic, propionic, and butyric acid, respectively. The developed method is simple, fast, linear, sensitive, accurate, precise, and robust for the quantification of SCFAs. This could serve as an alternative to conventional methodologies for the determination of these critical components in the intestinal health of chicken feces.

Details

Title
HPLC-DAD Development and Validation Method for Short-Chain Fatty Acids Quantification from Chicken Feces by Solid-Phase Extraction
Author
Díaz-Corona, Lenin Rodolfo 1   VIAFID ORCID Logo  ; Parra-Saavedra, Karina Jeanette 2   VIAFID ORCID Logo  ; Mora-Alonzo, Renata Sofia 2 ; Macías-Rodríguez, María Esther 2   VIAFID ORCID Logo  ; Martínez-Preciado, Alma H 1 ; Guevara-Martínez, Santiago José 2 ; Zamudio-Ojeda, Adalberto 3 ; Macias-Lamas, Adriana Macaria 2   VIAFID ORCID Logo 

 Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, Guadalajara 44430, Jalisco, Mexico; [email protected] (L.R.D.-C.); [email protected] (A.H.M.-P.) 
 Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, Guadalajara 44430, Jalisco, Mexico; [email protected] (K.J.P.-S.); [email protected] (R.S.M.-A.); [email protected] (M.E.M.-R.); [email protected] (S.J.G.-M.) 
 Departamento de Física, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán #1421, Guadalajara 44430, Jalisco, Mexico; [email protected] 
First page
308
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22978739
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819483693
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.