Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In order to help improve the economy, energy savings and emission reductions of pure electric buses, based on the driving data, a new driving cycle construction method is proposed. Through the dividing of short trips and the calculation of characteristic parameter values, two typical driving conditions (weekday driving condition and weekend driving condition) are constructed via principal components analysis and the k-means clustering method, and both have a high degree of compatibility with the actual conditions. Based on the two typical driving conditions, the CRITIC (Criteria Importance Through Intercriteria Correlation) method and the quantitative analysis are used to establish a quantitative evaluation model to score the economy of the driver’s driving behavior. The result shows that the weekend working condition with the better traffic environment promotes the generation of aggressive driving behavior and increases the random fluctuation seen in the driver’s driving process: for the weekend driving condition, the proportion of low economic efficiency is about 4.5 times bigger than the proportion on weekdays, and the former’s fluctuation range for the driving behavior score is 37% higher than that of the latter, meaning that the overall economy of the pure electric bus is much worse on weekends.

Details

Title
A Quantitative Study on Driving Behavior Economy Based on Big Data from the Pure Electric Bus
Author
Liu, Hongli 1 ; Yun, Weiguo 2 ; Li, Bin 1 ; Dai, Mengling 3 ; Wang, Yangyuhang 1 

 School of Automobile, Chang’an University, Xi’an 710064, China; [email protected] (H.L.); [email protected] (Y.W.) 
 Zhejiang Geely Farizon New Energy Commercial Vehicles Group Co., Ltd., Hangzhou 311243, China; [email protected] 
 Guizhou Xingqian Talent Resources Co., Ltd., Guiyang 550003, China; [email protected] 
First page
8033
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2819495863
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.