It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Sleep disorders are significant health concerns affecting a large population. Related clinical studies face the deficiency in sleep data and challenges in data analysis, which requires enormous human expertise and labor. Moreover, in current clinical practice, sleep data acquisition processes usually cover only one night’s sleep history, which is too short to recognize long-term sleep patterns. To address these challenges, we propose a semi-supervised learning (cluster-then-label) approach for sleep stage classification, integrating clustering algorithms into the supervised learning pipeline. We test the effectiveness of the proposed semi-supervised learning approach on two architectures: an advanced architecture using deep learning for classification and k-means for clustering, and a relatively naive Gaussian-based architecture. Also, we introduce two novel Gaussian transformations to improve the robustness and accuracy of the Gaussian-based architecture: assembled-fixed transformation and neural network based transformation. We reveal the effectiveness of the proposed algorithm via experiments on whole-night electroencephalogram (EEG) data. The experiments demonstrate that the proposed learning strategy improves the accuracy and F1 score over the state-of-the-art baseline on out-of-distribution human subjects. The experiments also confirm that the proposed Gaussian transformations can significantly gain normality to EEG band-power features and in turn facilitate the semi-supervised learning process. This cluster-then-label learning approach, combined with novel Gaussian transformations, can significantly improve the accuracy and efficiency of sleep stage classification, enabling more effective diagnosis of sleep disorders.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Pittsburgh, Department of Electrical and Computer Engineering, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000)
2 North Allegheny Senior High School, Wexford, USA (GRID:grid.21925.3d)
3 University of Pittsburgh, Department of Electrical and Computer Engineering, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000); University of Pittsburgh, Department of Bioengineering, Pittsburgh, USA (GRID:grid.21925.3d) (ISNI:0000 0004 1936 9000)