Abstract

Genomic mutations drive the pathogenesis of myelodysplastic syndromes and acute myeloid leukemia. While morphological and clinical features have dominated the classical criteria for diagnosis and classification, incorporation of molecular data can illuminate functional pathobiology. Here we show that unsupervised machine learning can identify functional objective molecular clusters, irrespective of anamnestic clinico-morphological features, despite the complexity of the molecular alterations in myeloid neoplasia. Our approach reflects disease evolution, informed classification, prognostication, and molecular interactions. We apply machine learning methods on 3588 patients with myelodysplastic syndromes and secondary acute myeloid leukemia to identify 14 molecularly distinct clusters. Remarkably, our model shows clinical implications in terms of overall survival and response to treatment even after adjusting to the molecular international prognostic scoring system (IPSS-M). In addition, the model is validated on an external cohort of 412 patients. Our subclassification model is available via a web-based open-access resource (https://drmz.shinyapps.io/mds_latent).

Myeloid neoplasias can show complex mutation patterns and molecular features. Here, the authors apply machine learning to classify risk groups of myeloid neoplasia which may correlate with differential response to treatment.

Details

Title
Molecular patterns identify distinct subclasses of myeloid neoplasia
Author
Kewan, Tariq 1   VIAFID ORCID Logo  ; Durmaz, Arda 2 ; Bahaj, Waled 3 ; Gurnari, Carmelo 4   VIAFID ORCID Logo  ; Terkawi, Laila 3 ; Awada, Hussein 3   VIAFID ORCID Logo  ; Ogbue, Olisaemeka D. 3   VIAFID ORCID Logo  ; Ahmed, Ramsha 3 ; Pagliuca, Simona 5 ; Awada, Hassan 6 ; Kubota, Yasuo 3 ; Mori, Minako 3   VIAFID ORCID Logo  ; Ponvilawan, Ben 3 ; Al-Share, Bayan 7 ; Patel, Bhumika J. 3 ; Carraway, Hetty E. 3   VIAFID ORCID Logo  ; Scott, Jacob 2 ; Balasubramanian, Suresh K. 7 ; Bat, Taha 8 ; Madanat, Yazan 8   VIAFID ORCID Logo  ; Sekeres, Mikkael A. 9 ; Haferlach, Torsten 10   VIAFID ORCID Logo  ; Visconte, Valeria 3   VIAFID ORCID Logo  ; Maciejewski, Jaroslaw P. 3   VIAFID ORCID Logo 

 Taussig Cancer Institute, Cleveland Clinic, Department of Translational Hematology and Oncology Research, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725); Yale University, Department of Hematology and Medical Oncology, New Haven, USA (GRID:grid.47100.32) (ISNI:0000 0004 1936 8710) 
 Taussig Cancer Institute, Cleveland Clinic, Department of Translational Hematology and Oncology Research, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725); Case Western Reserve University, Systems Biology and Bioinformatics Department, School of Medicine, Cleveland, USA (GRID:grid.67105.35) (ISNI:0000 0001 2164 3847) 
 Taussig Cancer Institute, Cleveland Clinic, Department of Translational Hematology and Oncology Research, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725) 
 Taussig Cancer Institute, Cleveland Clinic, Department of Translational Hematology and Oncology Research, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725); University of Rome Tor Vergata, Department of Biomedicine and Prevention, Ph.D. in Immunology, Molecular Medicine and Applied Biotechnology, Rome, Italy (GRID:grid.6530.0) (ISNI:0000 0001 2300 0941) 
 Taussig Cancer Institute, Cleveland Clinic, Department of Translational Hematology and Oncology Research, Cleveland, USA (GRID:grid.239578.2) (ISNI:0000 0001 0675 4725); CHRU de Nancy, Department of Clinical Hematology, Nancy, France (GRID:grid.410527.5) (ISNI:0000 0004 1765 1301) 
 Roswell Park Comprehensive Cancer Center, Buffalo, USA (GRID:grid.410527.5) (ISNI:0000 0001 2181 8635) 
 Wayne State University, Department of Hematology and Oncology, Karmanos Cancer Institute, Detroit, USA (GRID:grid.254444.7) (ISNI:0000 0001 1456 7807) 
 University of Texas Southwestern Medical Center, Department of Internal Medicine, Division of Hematology and Oncology, Dallas, USA (GRID:grid.267313.2) (ISNI:0000 0000 9482 7121) 
 University of Miami, Division of Hematology, Sylvester Cancer Center, Miami, USA (GRID:grid.26790.3a) (ISNI:0000 0004 1936 8606) 
10  MLL Munich Leukemia Laboratory, Munich, Germany (GRID:grid.420057.4) (ISNI:0000 0004 7553 8497) 
Pages
3136
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2820832254
Copyright
© The Author(s) 2023. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.