It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Given the ever-increasing global demand for energy and the attention to be paid to environmental issues and climate change, research is developing more and more about new cold production technologies using renewable sources or recovery. This cooling demand is mainly covered by technologies conventional machines, in particular vapor compression machines, which leads to a high increased demand for electricity. In this context, absorption systems (Herold et al. 2016), lend themselves well to the recovery of heat at low temperature for the production of cold. The advantage of these machines is that the mechanical compression is replaced by a compression thermochemical that uses heat. Although characterized by a low level of maturity technology (TRL 3-4), an even more ambitious study concerns combined systems based on exploitation of thermal energy at low temperatures, in which electrical power and cooling are produced in the same cycle. The present work focuses on the analysis of a pilot installation (Figure 1) of combined production cooling and electricity (CFE) in parallel, from a low temperature source [80 -150°C] and from maximum thermal power of the generator 15 kW.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer