It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In fusion reactor design, neutron leaks intensively from blanket material through a gap. In this streaming phenomenon, backscattering cross section is known to be very crucial. In the present study, the author's team carried out a new experiment for benchmarking the large angle scattering cross section of tungsten using a DT neutron source of OKTAVIAN facility, Osaka University, Japan. Tungsten-containing material is under consideration as the radiation shield in a fusion reactor. The experimental geometry consists of a DT neutron source, two shadow bars, niobium foil, and a tungsten target. Four irradiations were performed at a neutron energy of 14 MeV using DT neutrons to extract only the contribution of large angle scattering cross section. By using two shadow bars, room return contribution was effectively suppressed. Consequently, only backscattering neutrons were measured by using a niobium foil. In the present benchmark study, obtained experimental data were compared with numerical calculations by MCNP6 using various nuclear data libraries, including JENDL-4.0, JENDL-5, JEFF-3.3, and ENDF/B-VIII.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer