It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Electrochemical carbon dioxide (CO2) conversion to hydrocarbon fuels, such as methane (CH4), offers a promising solution for the long-term and large-scale storage of renewable electricity. To enable this technology, CO2-to-CH4 conversion must achieve high selectivity and energy efficiency at high currents. Here, we report an electrochemical conversion system that features proton-bicarbonate-CO2 mass transport management coupled with an in-situ copper (Cu) activation strategy to achieve high CH4 selectivity at high currents. We find that open matrix Cu electrodes sustain sufficient local CO2 concentration by combining both dissolved CO2 and in-situ generated CO2 from the bicarbonate. In-situ Cu activation through alternating current operation renders and maintains the catalyst highly selective towards CH4. The combination of these strategies leads to CH4 Faradaic efficiencies of over 70% in a wide current density range (100 – 750 mA cm-2) that is stable for at least 12 h at a current density of 500 mA cm-2. The system also delivers a CH4 concentration of 23.5% in the gas product stream.
Electrochemical CO2 conversion to methane offers a promising solution for the large-scale storage of renewable electricity, yet the catalytic selectivity at high current density still needs to be refined. Here the authors report to use both dissolved CO2 and in-situ generated CO2 from bicarbonate to sustain high local CO2 concentration around Cu electrode and thus achieve selective CO2 conversion to methane.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Queen’s University, Department of Chemical Engineering, Kingston, Canada (GRID:grid.410356.5) (ISNI:0000 0004 1936 8331)
2 The Barcelona Institute of Science and Technology, ICFO–Institut de Ciències Fotòniques, Barcelona, Spain (GRID:grid.473715.3) (ISNI:0000 0004 6475 7299)