It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this work, benzene based hypercrosslinked polymer (HCP) as an adsorbent was modified using amine group to enhance CO2 uptake capability and selectivity. Based on BET analysis result, the HCP and the modified HCP provide surface area of 806 (m2 g−1) and micropore volume of 453 (m2 g−1) and 0.19 (cm3 g−1) and 0.14 (cm3 g−1), respectively. The CO2 and N2 gases adsorption were performed in a laboratory scale reactor at a temperature between 298 and 328 K and pressure up to 9 bar. The experimental data were evaluated using isotherm, kinetic and thermodynamic models to identify the absorbent behavior. The maximum CO2 adsorption capacity at 298 K and 9 bar was obtained 301.67 (mg g−1) for HCP and 414.41 (mg g−1) for amine modified HCP. The CO2 adsorption thermodynamic parameters assessment including enthalpy changes, entropy changes, and Gibbs free energy changes at 298 K were resulted − 14.852 (kJ mol−1), − 0.024 (kJ mol−1 K−1), − 7.597 (kJ mol−1) for HCP and − 17.498 (kJ mol−1), − 0.029(kJ mol−1 K−1), − 8.9 (kJ mol−1) for amine functionalized HCP, respectively. Finally, the selectivity of the samples were calculated at a CO2/N2 composition of 15:85 (v/v) and 43% enhancement in adsorption selectivity at 298 K was obtained for amine modified HCP.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Iran University of Science and Technology, School of Chemical, Petroleum and Gas Engineering, Tehran, Iran (GRID:grid.411748.f) (ISNI:0000 0001 0387 0587)