Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Reactive oxygen species (ROS), including superoxide anion, are involved in regulating various signaling pathways and are also responsible for oxidative stress. Sensing superoxide anion is of particular importance due to its biological significance. One potential approach is to use Coelenterazine as a chemiluminescent probe for the dynamic sensing of this ROS. In this study, we investigated the superoxide anion-triggered chemiluminescence of native Coelenterazine and two halogenated analogs and found that they showed a ~100-fold enhancement of light emission in aqueous solution, which was significantly reduced in methanol and nonexistent in aprotic solvents. In fact, Coelenterazine showed more intense light emission in aprotic solvents and, interestingly, although the light emission of the analogs seemed relatively unaffected by the solvents, their chemiluminescence was significantly quenched in water compared to methanol and, especially, to aprotic media. This suggests that the quenching effect observed for Coelenterazine is responsible for the differences in aqueous media, rather than an intrinsic enhanced emission by the analogs. In summary, we present Coelenterazine analogs that could serve as a basis for enhanced sensing of superoxide anion, providing information that could further our understanding of this chemiluminescent system.

Details

Title
Investigation of the Superoxide Anion-Triggered Chemiluminescence of Coelenterazine Analogs
Author
El Hadi Erbiai 1   VIAFID ORCID Logo  ; González-Berdullas, Patricia 1   VIAFID ORCID Logo  ; Joaquim C G Esteves da Silva 2   VIAFID ORCID Logo  ; Luís Pinto da Silva 2   VIAFID ORCID Logo 

 Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; [email protected] (E.H.E.); [email protected] (P.G.-B.); [email protected] (J.C.G.E.d.S.) 
 Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; [email protected] (E.H.E.); [email protected] (P.G.-B.); [email protected] (J.C.G.E.d.S.); LACOMEPHI, GreenUPorto, Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal 
First page
6617
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2823980840
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.