Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Spacecraft motors are often driven with trapezoidal phase currents to achieve higher output torque. For hollow cup motors (HCM) driven by trapezoidal wave currents, parallel magnetised permanent magnet (PM) motors produce an air gap magnetic field (AMF) waveform which is significantly different from the trapezoidal wave, causing the motor to generate noise or vibration. The existing control optimisation method or structure improvement design method is difficult to directly apply to HCM due to its large gas gap. In this paper, according to the fundamental theory of a constant magnetic field, the AMF of HCM is analysed using the equivalent surface current method (ESCM) and its mathematical model is established. The analytical expression of the AMF is solved, and the influencing parameters of the AMF are clarified. The structural design of the HCM with eccentric PMs sintered with high-performance NdFeB is further improved. On this basis, a prototype motor is designed. Simulation results show that the structure can effectively increase the width of the flat section of the AMF and make the AMF close to an ideal trapezoidal wave (ITW). Experiments verify the correctness of the method.

Details

Title
A Novel Design of Permanent Magnets for the Air Gap Magnetic Field of Hollow-Cup Motor
Author
Sun, Jinji; Sun, Haoxi  VIAFID ORCID Logo  ; Xu, Xueping  VIAFID ORCID Logo 
First page
6537
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2823981325
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.