Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Considering the possible overvoltage caused by high-penetration photovoltaics (PVs) connected to the distribution networks (DNs), a cluster partition-based voltage control combined day-ahead scheduling and real-time control for distribution networks is proposed. Firstly, a community detection algorithm utilizing a coupling quality function is introduced to divide the PVs into clusters. Based on the cluster partition, day-ahead scheduling (DAS) is proposed with the objective of minimizing the operating costs of PVs, as well as the on-load tap changer (OLTC). In the real-time control, a second-order cone programming (SOCP) model-based real-time voltage control (RTVC) strategy is drawn up in each cluster to regulate the PV inverters, and this strategy can correct the day-ahead scheduling by modifications. The proposed strategy realizes the combination of day-ahead scheduling and real-time voltage control, and the optimization of voltage control can be greatly simplified. Finally, the proposed method is applied to a practical 10 kV feeder to verify its effectiveness.

Details

Title
Cluster Partition-Based Voltage Control Combined Day-Ahead Scheduling and Real-Time Control for Distribution Networks
Author
Sun, Wenwen; He, Guoqing
First page
4375
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2823995089
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.