Full text

Turn on search term navigation

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The work considers traveling wave optical solutions for the nonlinear generalized fractional KMN equation. This equation is considered for describing pulse propagation in optical fibers and communication systems using two quite similar approaches, based on the expansion of these solutions in the exponential or polynomial forms. Both approaches belong to the direct solving class of methods for PDEs and suppose the use of an auxiliary equation. The solutions acquired in this paper are obtained from first- and second-order differential equations that act as auxiliary equations. In addition, we generated 3D, contour, and 2D plots to illustrate the characteristics of the obtained soliton solutions. To create these plots, we carefully selected appropriate values for the relevant parameters.

Details

Title
Traveling Wave Optical Solutions for the Generalized Fractional Kundu–Mukherjee–Naskar (gFKMN) Model
Author
Tang, Yong  VIAFID ORCID Logo 
First page
2583
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2824002419
Copyright
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.