Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Dissolved organic matter (DOM) plays important roles in environmental ecosystems. While many studies have explored the characteristics of aged biochar, limited information is available about the properties of DOM derived from aged biochar. In this study, biochar obtained from maize stalk and soybean straw were aged using farmland or vegetable-soil solution, as well as soil solution containing hydrogen peroxide (H2O2). Chemical composition of the extracted DOM from the aged biochar was analyzed via excitation–emission matrix coupled with fluorescence regional integration (FRI) and parallel factor analysis (PARAFAC). Obtained results showed that biochar aged with H2O2-enriched soil solution had higher water-soluble organic carbon, ranging from 147.26–734.13% higher than the controls. FRI analysis revealed fulvic and humic-like organics as the key components, with a considerable increase of 57.48–235.96% in the humic-like component, especially in soybean-straw-aged biochar. PARAFAC identified four humic-like substance components. Concurrently, the aromaticity and humification of the aged-biochar-derived DOM increased, while the molecular weight decreased. These findings suggest that DOM derived from aged biochar, with a high content of humic-like organics, might impact the mobility and toxicity of pollutants in soil.

Details

Title
Characterization of Dissolved Organic Matter Released from Aged Biochar: A Comparative Study of Two Feedstocks and Multiple Aging Approaches
Author
Yan, Yue 1 ; Xu, Leqi 2 ; Li, Guitong 2 ; Gao, Xiang 1 ; Ma, Hongfang 3 

 Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; [email protected] (Y.Y.); 
 Yantai Research Institute, China Agricultural University, Yantai 264670, China; College of Land Science and Technology, China Agricultural University, Beijing 100193, China 
 School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China 
First page
4558
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2824004101
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.