Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

At present, the latest video coding standard is Versatile Video Coding (VVC). Although the coding efficiency of VVC is significantly improved compared to the previous generation, standard High-Efficiency Video Coding (HEVC), it also leads to a sharp increase in coding complexity. VVC significantly improves HEVC by adopting the quadtree with nested multi-type tree (QTMT) partition structure, which has been proven to be very effective. This paper proposes a low-complexity fast coding unit (CU) partition decision method based on the light gradient boosting machine (LGBM) classifier. Representative features were extracted to train a classifier matching the framework. Secondly, a new fast CU decision framework was designed for the new features of VVC, which could predict in advance whether the CU was divided, whether it was divided by quadtree (QT), and whether it was divided horizontally or vertically. To solve the multi-classification problem, the technique of creating multiple binary classification problems was used. Subsequently, a multi-threshold decision-making scheme consisting of four threshold points was proposed, which achieved a good balance between time savings and coding efficiency. According to the experimental results, our method achieved a significant reduction in encoding time, ranging from 47.93% to 54.27%, but only improved the Bjøntegaard delta bit-rate (BDBR) by 1.07%~1.57%. Our method showed good performance in terms of both encoding time reduction and efficiency.

Details

Title
Low-Complexity Fast CU Classification Decision Method Based on LGBM Classifier
Author
Wang, Yanjun; Liu, Yong; Zhao, Jinchao  VIAFID ORCID Logo  ; Zhang, Qiuwen
First page
2488
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2824004960
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.