Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Aromatic plants are a remarkable source of natural products. Aloysia citrodora Paláu (Verbenaceae), commonly known as lemon verbena, is a relevant source of essential oils with potential applications due to its lemony scent and bioactive properties. Studies carried out on this species have focused on the volatile composition of the essential oil obtained by Clevenger hydrodistillation (CHD), with little information available on alternative extraction methodologies or the biological properties of the oil. Therefore, this work aimed to compare the volatile composition, antioxidant activity, cytotoxicity, anti-inflammatory and antibacterial activities of the essential oil extracted by conventional hydrodistillation by Clevenger (CHD) and Microwave-Assisted Hydrodistillation (MAHD). Significant differences (p < 0.05) were observed for some compounds, including the two major ones, geranial (18.7–21.1%) and neral (15.3–16.2%). Better antioxidant activity was exhibited by the MAHD essential oil in DPPH radical scavenging and reducing power assays, while no differences were observed in the cellular antioxidant assay. The MADH essential oil also presented higher inhibition against four tumoral cell lines and exhibited lower cytotoxicity in non-tumoral cells as compared with Clevenger-extracted essential oil. In contrast, the latter showed higher anti-inflammatory activity. Both essential oils were able to inhibit the growth of eleven out of the fifteen bacterial strains tested.

Details

Title
Volatile Compounds and Biological Activity of the Essential Oil of Aloysia citrodora Paláu: Comparison of Hydrodistillation and Microwave-Assisted Hydrodistillation
Author
Sprea, Rafael M 1   VIAFID ORCID Logo  ; Fernandes, Luís H M 1 ; Tânia C S P Pires 1   VIAFID ORCID Logo  ; Calhelha, Ricardo C 1   VIAFID ORCID Logo  ; Pedro João Rodrigues 2   VIAFID ORCID Logo  ; Amaral, Joana S 1   VIAFID ORCID Logo 

 Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; [email protected] (R.M.S.); [email protected] (L.H.M.F.); [email protected] (T.C.S.P.P.); [email protected] (R.C.C.); Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; [email protected] 
 Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; [email protected]; Research Center in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal 
First page
4528
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2824042694
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.