It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Biological microswimmers can coordinate their motions to exploit their fluid environment—and each other—to achieve global advantages in their locomotory performance. These cooperative locomotion require delicate adjustments of both individual swimming gaits and spatial arrangements of the swimmers. Here we probe the emergence of such cooperative behaviors among artificial microswimmers endowed with artificial intelligence. We present the first use of a deep reinforcement learning approach to empower the cooperative locomotion of a pair of reconfigurable microswimmers. The AI-advised cooperative policy comprises two stages: an approach stage where the swimmers get in close proximity to fully exploit hydrodynamic interactions, followed a synchronization stage where the swimmers synchronize their locomotory gaits to maximize their overall net propulsion. The synchronized motions allow the swimmer pair to move together coherently with an enhanced locomotion performance unattainable by a single swimmer alone. Our work constitutes a first step toward uncovering intriguing cooperative behaviors of smart artificial microswimmers, demonstrating the vast potential of reinforcement learning towards intelligent autonomous manipulations of multiple microswimmers for their future biomedical and environmental applications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 The University of Hong Kong, Department of Mechanical Engineering, Hong Kong, China (GRID:grid.194645.b) (ISNI:0000000121742757)
2 Cornell University, Sibley School of Mechanical and Aerospace Engineering, Ithaca, USA (GRID:grid.5386.8) (ISNI:000000041936877X)
3 Santa Clara University, Department of Mechanical Engineering, CA, USA (GRID:grid.263156.5) (ISNI:0000 0001 2299 4243)