Abstract

We introduce and validate four adaptive models (AMs) to perform a physiologically based Nested-Model-Selection (NMS) estimation of such microvascular parameters as forward volumetric transfer constant, Ktrans, plasma volume fraction, vp, and extravascular, extracellular space, ve, directly from Dynamic Contrast-Enhanced (DCE) MRI raw information without the need for an Arterial-Input Function (AIF). In sixty-six immune-compromised-RNU rats implanted with human U-251 cancer cells, DCE-MRI studies estimated pharmacokinetic (PK) parameters using a group-averaged radiological AIF and an extended Patlak-based NMS paradigm. One-hundred-ninety features extracted from raw DCE-MRI information were used to construct and validate (nested-cross-validation, NCV) four AMs for estimation of model-based regions and their three PK parameters. An NMS-based a priori knowledge was used to fine-tune the AMs to improve their performance. Compared to the conventional analysis, AMs produced stable maps of vascular parameters and nested-model regions less impacted by AIF-dispersion. The performance (Correlation coefficient and Adjusted R-squared for NCV test cohorts) of the AMs were: 0.914/0.834, 0.825/0.720, 0.938/0.880, and 0.890/0.792 for predictions of nested model regions, vp, Ktrans, and ve, respectively. This study demonstrates an application of AMs that quickens and improves DCE-MRI based quantification of microvasculature properties of tumors and normal tissues relative to conventional approaches.

Details

Title
Dynamic contrast enhanced (DCE) MRI estimation of vascular parameters using knowledge-based adaptive models
Author
Bagher-Ebadian, Hassan 1 ; Brown, Stephen L. 2 ; Ghassemi, Mohammad M. 3 ; Nagaraja, Tavarekere N. 4 ; Valadie, Olivia Grahm 5 ; Acharya, Prabhu C. 6 ; Cabral, Glauber 7 ; Divine, George 8 ; Knight, Robert A. 7 ; Lee, Ian Y. 9 ; Xu, Jun H. 9 ; Movsas, Benjamin 2 ; Chetty, Indrin J. 10 ; Ewing, James R. 11 

 Henry Ford Health, Department of Radiation Oncology, Detroit, USA (GRID:grid.239864.2) (ISNI:0000 0000 8523 7701); Michigan State University, Department of Radiology, East Lansing, USA (GRID:grid.17088.36) (ISNI:0000 0001 2150 1785); Michigan State University, Department of Osteopathic Medicine, East Lansing, USA (GRID:grid.17088.36) (ISNI:0000 0001 2150 1785); Oakland University, Department of Physics, Rochester, USA (GRID:grid.261277.7) (ISNI:0000 0001 2219 916X) 
 Henry Ford Health, Department of Radiation Oncology, Detroit, USA (GRID:grid.239864.2) (ISNI:0000 0000 8523 7701); Michigan State University, Department of Radiology, East Lansing, USA (GRID:grid.17088.36) (ISNI:0000 0001 2150 1785); Wayne State University, Department of Radiation Oncology, Detroit, USA (GRID:grid.254444.7) (ISNI:0000 0001 1456 7807) 
 Michigan State University, Department of Computer Science and Engineering, East Lansing, USA (GRID:grid.17088.36) (ISNI:0000 0001 2150 1785) 
 Michigan State University, Department of Radiology, East Lansing, USA (GRID:grid.17088.36) (ISNI:0000 0001 2150 1785); Henry Ford Health, Department of Neurosurgery, Detroit, USA (GRID:grid.239864.2) (ISNI:0000 0000 8523 7701) 
 Wayne State University, Department of Radiation Oncology, Detroit, USA (GRID:grid.254444.7) (ISNI:0000 0001 1456 7807) 
 Oakland University, Department of Physics, Rochester, USA (GRID:grid.261277.7) (ISNI:0000 0001 2219 916X) 
 Henry Ford Health, Department of Neurology, Detroit, USA (GRID:grid.239864.2) (ISNI:0000 0000 8523 7701) 
 Henry Ford Health, Department of Public Health Sciences, Detroit, USA (GRID:grid.239864.2) (ISNI:0000 0000 8523 7701); Michigan State University, Department of Epidemiology and Biostatistics, E. Lansing, USA (GRID:grid.17088.36) (ISNI:0000 0001 2150 1785) 
 Henry Ford Health, Department of Neurosurgery, Detroit, USA (GRID:grid.239864.2) (ISNI:0000 0000 8523 7701) 
10  Henry Ford Health, Department of Radiation Oncology, Detroit, USA (GRID:grid.239864.2) (ISNI:0000 0000 8523 7701); Oakland University, Department of Physics, Rochester, USA (GRID:grid.261277.7) (ISNI:0000 0001 2219 916X); Wayne State University, Department of Radiation Oncology, Detroit, USA (GRID:grid.254444.7) (ISNI:0000 0001 1456 7807) 
11  Michigan State University, Department of Radiology, East Lansing, USA (GRID:grid.17088.36) (ISNI:0000 0001 2150 1785); Oakland University, Department of Physics, Rochester, USA (GRID:grid.261277.7) (ISNI:0000 0001 2219 916X); Henry Ford Health, Department of Neurosurgery, Detroit, USA (GRID:grid.239864.2) (ISNI:0000 0000 8523 7701); Henry Ford Health, Department of Neurology, Detroit, USA (GRID:grid.239864.2) (ISNI:0000 0000 8523 7701); Wayne State University, Department of Neurology, Detroit, USA (GRID:grid.254444.7) (ISNI:0000 0001 1456 7807) 
Pages
9672
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2825651798
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.