It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Protein Tyrosine Phosphatase 1B (PTP1B) is the prototypical protein tyrosine phosphatase and plays an essential role in the regulation of several kinase-driven signalling pathways. PTP1B displays a preference for bisphosphorylated substrates. Here we identify PTP1B as an inhibitor of IL-6 and show that, in vitro, it can dephosphorylate all four members of the JAK family. In order to gain a detailed understanding of the molecular mechanism of JAK dephosphorylation, we undertook a structural and biochemical analysis of the dephosphorylation reaction. We identified a product-trapping PTP1B mutant that allowed visualisation of the tyrosine and phosphate products of the reaction and a substrate-trapping mutant with a vastly decreased off-rate compared to those previously described. The latter mutant was used to determine the structure of bisphosphorylated JAK peptides bound to the enzyme active site. These structures revealed that the downstream phosphotyrosine preferentially engaged the active site, in contrast to the analogous region of IRK. Biochemical analysis confirmed this preference. In this binding mode, the previously identified second aryl binding site remains unoccupied and the non-substrate phosphotyrosine engages Arg47. Mutation of this arginine disrupts the preference for the downstream phosphotyrosine. This study reveals a previously unappreciated plasticity in how PTP1B interacts with different substrates.
Structural and biochemical characterization of the phosphastase and immune checkpoint PTP1B reveals the molecular basis of PTBP1B/JAK interaction and plasticity of substrate recognition by PTP1B.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Walter and Eliza Hall Institute of Medical Research, Parkville, Australia (GRID:grid.1042.7) (ISNI:0000 0004 0432 4889); The University of Melbourne, Royal Parade, Department of Medical Biology, Parkville, Australia (GRID:grid.1008.9) (ISNI:0000 0001 2179 088X)
2 Walter and Eliza Hall Institute of Medical Research, Parkville, Australia (GRID:grid.1042.7) (ISNI:0000 0004 0432 4889)
3 Monash University, Monash Biomedicine Discovery Institute, Clayton, Australia (GRID:grid.1002.3) (ISNI:0000 0004 1936 7857); Monash University, Department of Biochemistry and Molecular Biology, Clayton, Australia (GRID:grid.1002.3) (ISNI:0000 0004 1936 7857); Peter MacCallum Cancer Centre, Cancer Immunology Program, Melbourne, Australia (GRID:grid.1055.1) (ISNI:0000000403978434)