It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In an effective theory of gravity, thermodynamic quantities of black holes receive corrections from the infinite series of higher derivative terms. At the next to leading order, these can be obtained by using only the leading order solution. In this paper, we push forward this property to the next to next to leading order. We propose a formula which yields the Euclidean action of asymptotically flat black holes at the next to next to leading order using only the solution up to and including the next to leading order. Other conserved quantities are derived from the Euclidean action via standard thermodynamic relation. We verify our formula in examples of D-dimensional pure gravity and Einstein-Maxwell theory extended by 4- and 6-derivative terms. Based on our formula, we also prove that for asymptotically flat black holes, the physical quantities are invariant under field redefinitions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Tianjin University, Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin, China (GRID:grid.33763.32) (ISNI:0000 0004 1761 2484)
2 Tianjin University, Center for Joint Quantum Studies and Department of Physics, School of Science, Tianjin, China (GRID:grid.33763.32) (ISNI:0000 0004 1761 2484); International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Binhai New City, China (GRID:grid.33763.32) (ISNI:0000 0004 1761 2484)