It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Purpose
The incidence of acetabular fractures (AFs) is increasing in all industrial nations, with posterior column fractures (PCFs) accounting for 18.5–22% of these cases. Treating displaced AFs in elderly patients is a known challenge. The optimal surgical strategy implementing open reduction and internal fixation (ORIF), total hip arthroplasty (THA), or percutaneous screw fixation (SF), remains debated. Additionally, with either of these treatment methods, the post-surgical weight bearing protocols are also ambiguous. The aim of this biomechanical study was to evaluate construct stiffness and failure load following a PCF fixation with either standard plate osteosynthesis, SF, or using a screwable cup for THA under full weight bearing conditions.
Methods
Twelve composite osteoporotic pelvises were used. A PCF according to the Letournel Classification was created in 24 hemi-pelvis constructs stratified into three groups (n = 8) as follows: (i) posterior column fracture with plate fixation (PCPF); (ii) posterior column fracture with SF (PCSF); (iii) posterior column fracture with screwable cup fixation (PCSC). All specimens were biomechanically tested under progressively increasing cyclic loading until failure, with monitoring of the interfragmentary movements via motion tracking.
Results
Initial construct stiffness (N/mm) was 154.8 ± 68.3 for PCPF, 107.3 ± 41.0 for PCSF, and 133.3 ± 27.5 for PCSC, with no significant differences among the groups, p = 0.173. Cycles to failure and failure load were 7822 ± 2281 and 982.2 ± 428.1 N for PCPF, 3662 ± 1664 and 566.2 ± 366.4 N for PCSF, and 5989 ± 3440 and 798.9 ± 544.0 N for PCSC, being significantly higher for PCPF versus PCSF, p = 0.012.
Conclusion
Standard ORIF of PCF with either plate osteosynthesis or using a screwable cup for THA demonstrated encouraging results for application of a post-surgical treatment concept with a full weight bearing approach. Further biomechanical cadaveric studies with larger sample size should be initiated for a better understanding of AF treatment with full weight bearing and its potential as a concept for PCF fixation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer