It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Bifidobacteria are representative intestinal probiotics that have extremely high application value in the food and medical fields. However, the lack of molecular biology tools limits the research on functional genes and mechanisms of bifidobacteria. The application of an accurate and efficient CRISPR system to genome engineering can fill the gap in efficient genetic tools for bifidobacteria. In this study, CRISPR system of B. animalis AR668 was established, which successfully knocked out gene 0348 and gene 0208. The influence of different homology arms and fragments on the knockout effect of the system was explored. In addition, the inducible plasmid curing system of bifidobacteria was innovatively established. This study contributes to the genetic modification and functional mechanism analysis of bifidobacteria.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer