It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that is difficult to diagnose. Inflammatory bowel disease (IBD) is a common chronic digestive disease. Previous studies have shown a potential correlation between ASD and IBD, but the pathophysiological mechanism remains unclear. The purpose of this research was to examine the biological mechanisms underlying the differentially expressed genes (DEGs) of ASD and IBD using bioinformatics tools.
Methods
Limma software was used to evaluate the DEGs between ASD and IBD. The GSE3365, GSE18123, and GSE150115 microarray data sets were acquired from the Gene Expression Omnibus (GEO) database. We then performed 6 analyses, namely, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation; weighted gene coexpression network analysis; correlation analysis of hub genes with autophagy, ferroptosis and immunity; transcriptional regulation analysis of hub genes; single-cell sequencing analysis; and potential therapeutic drug prediction.
Results
A total of 505 DEGs associated with ASD and 616 DEGs associated with IBD were identified, and 7 genes overlapped between these sets. GO and KEGG analyses revealed several pathways enriched in both diseases. A total of 98 common genes related to ASD and IBD were identified by weighted gene coexpression network analysis (WGCNA), and 4 hub genes were obtained by intersection with the 7 intersecting DEGs, which were PDGFC, CA2, GUCY1B3 and SDPR. We also found that 4 hub genes in the two diseases were related to autophagy, ferroptosis or immune factors. In addition, motif–TF annotation analysis showed that cisbp__M0080 was the most relevant motif. We also used the Connectivity Map (CMap) database to identify 4 potential therapeutic agents.
Conclusion
This research reveals the shared pathogenesis of ASD and IBD. In the future, these common hub genes may provide new targets for further mechanistic research as well as new therapies for patients with ASD and IBD.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer