Abstract

Control and understanding of ensembles of skyrmions is important for realization of future technologies. In particular, the order-disorder transition associated with the 2D lattice of magnetic skyrmions can have significant implications for transport and other dynamic functionalities. To date, skyrmion ensembles have been primarily studied in bulk crystals, or as isolated skyrmions in thin film devices. Here, we investigate the condensation of the skyrmion phase at room temperature and zero field in a polar, van der Waals magnet. We demonstrate that we can engineer an ordered skyrmion crystal through structural confinement on the μm scale, showing control over this order-disorder transition on scales relevant for device applications.

Kosterlitz–Thouless–Halperin–Nelson–Young (KTHNY) theory describes the melting of an ordered two-dimensional phase to a disordered phase, via a quasi-ordered ‘hexatic’ phase. Magnetic skyrmions, as a phase of two-dimensional quasi-particles may be expected to exhibit a KTHNY melting process, however, observing such a phase transition is difficult. Herein, Meisenheimer et al study the formation of magnetic skyrmions in (Fe0.5Co0.5)5GeTe2, and, via physical confinement at device scale, succeed in obtaining an ordered skrymion phase.

Details

Title
Ordering of room-temperature magnetic skyrmions in a polar van der Waals magnet
Author
Meisenheimer, Peter 1   VIAFID ORCID Logo  ; Zhang, Hongrui 1   VIAFID ORCID Logo  ; Raftrey, David 2   VIAFID ORCID Logo  ; Chen, Xiang 3   VIAFID ORCID Logo  ; Shao, Yu-Tsun 4 ; Chan, Ying-Ting 5 ; Yalisove, Reed 1 ; Chen, Rui 1 ; Yao, Jie 1   VIAFID ORCID Logo  ; Scott, Mary C. 6   VIAFID ORCID Logo  ; Wu, Weida 5   VIAFID ORCID Logo  ; Muller, David A. 4   VIAFID ORCID Logo  ; Fischer, Peter 2   VIAFID ORCID Logo  ; Birgeneau, Robert J. 3   VIAFID ORCID Logo  ; Ramesh, Ramamoorthy 7   VIAFID ORCID Logo 

 University of California, Department of Materials Science and Engineering, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878) 
 Lawrence Berkeley National Laboratory, Materials Sciences Division, Berkeley, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551); University of California, Department of Physics, Santa Cruz, USA (GRID:grid.205975.c) (ISNI:0000 0001 0740 6917) 
 Lawrence Berkeley National Laboratory, Materials Sciences Division, Berkeley, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551); University of California, Department of Physics, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878) 
 Cornell University, School of Applied and Engineering Physics, Ithaca, USA (GRID:grid.5386.8) (ISNI:000000041936877X) 
 Rutgers University, Department of Physics, New Brunswick, USA (GRID:grid.430387.b) (ISNI:0000 0004 1936 8796) 
 University of California, Department of Materials Science and Engineering, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878); Lawrence Berkeley National Laboratory, Molecular Foundry, Berkeley, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551) 
 University of California, Department of Materials Science and Engineering, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878); Lawrence Berkeley National Laboratory, Materials Sciences Division, Berkeley, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551); University of California, Department of Physics, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878) 
Pages
3744
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2828982009
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.