Full text

Turn on search term navigation

© 2023 Jeon, Woo. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Auditory evoked potential (AEP) has been used to evaluate the degree of hearing and speech cognition. Because AEP generates a very small voltage relative to ambient noise, a repetitive presentation of a stimulus, such as a tone, word, or short sentence, should be employed to generate ensemble averages over trials. However, the stimulation of repetitive short words and sentences may present an unnatural situation to a subject. Phoneme-related potentials (PRPs), which are evoked-responses to typical phonemic stimuli, can be extracted from electroencephalography (EEG) data in response to a continuous storybook. In this study, we investigated the effects of spectrally degraded speech stimuli on PRPs. The EEG data in response to the spectrally degraded and natural storybooks were recorded from normal listeners, and the PRP components for 10 vowels and 12 consonants were extracted. The PRP responses to a vocoded (spectrally-degraded) storybook showed a statistically significant lower peak amplitude and were prolonged compared with those of a natural storybook. The findings in this study suggest that PRPs can be considered a potential tool to evaluate hearing and speech cognition as other AEPs. Moreover, PRPs can provide the details of phonological processing and phonemic awareness to understand poor speech intelligibility. Further investigation with the hearing impaired is required prior to clinical application.

Details

Title
Effect of speech-stimulus degradation on phoneme-related potential
Author
Min-Jae Jeon; Woo, Jihwan  VIAFID ORCID Logo 
First page
e0287584
Section
Research Article
Publication year
2023
Publication date
Jun 2023
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829062899
Copyright
© 2023 Jeon, Woo. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.