It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the last years, the AEC (Architecture, Engineering and Construction) domain has exponentially increased the use of BIM and HBIM models for several applications, such as planning renovation and restoration, building maintenance, cost managing, or structural/energetic retrofit design. However, obtaining detailed as-built BIM models is a demanding and time-consuming process. Especially in historical contexts, many different and complex architectural elements need to be carefully and manually modelled. Meshes or surfaces and NURBS or polylines, derived from 3D reality-based data, are recently used as a reference for the HBIM accurate modelling. This work proposes a comprehensive and novel semi-automated approach to reconstruct architectural elements through the Visual Programming Language (VPL) Dynamo software and a Boundary-Representation method (B-rep), starting from 3D surveying data and point clouds classification. A wide package of scripts provides solutions for modelling complex shapes and transferring the obtained 3D models into BIM Authoring tools for a complete reconstruction phase. The presented procedure, useful for different BIM or HBIM applications, proved to reduce the modelling time significantly.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy; 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy; Department of Industrial Engineering (DII), University of Trento, Trento, Italy
2 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy; 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy; Department of Architecture and Design, Politecnico di Torino, Torino, Italy
3 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy; 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy
4 Department of Architecture and Design, Politecnico di Torino, Torino, Italy; Department of Architecture and Design, Politecnico di Torino, Torino, Italy