Abstract

Achieving high solar-to-hydrogen (STH) efficiency concomitant with long-term durability using low-cost, scalable photo-absorbers is a long-standing challenge. Here we report the design and fabrication of a conductive adhesive-barrier (CAB) that translates >99% of photoelectric power to chemical reactions. The CAB enables halide perovskite-based photoelectrochemical cells with two different architectures that exhibit record STH efficiencies. The first, a co-planar photocathode-photoanode architecture, achieved an STH efficiency of 13.4% and 16.3 h to t60, solely limited by the hygroscopic hole transport layer in the n-i-p device. The second was formed using a monolithic stacked silicon-perovskite tandem, with a peak STH efficiency of 20.8% and 102 h of continuous operation before t60 under AM 1.5G illumination. These advances will lead to efficient, durable, and low-cost solar-driven water-splitting technology with multifunctional barriers.

High-efficiency photoelectrodes, which integrate light absorption with catalysis, have been limited to costly materials. Here, the authors develop an anticorrosion barrier that enables low-cost semiconductors for integrated solar fuel devices with 20.8% solar-to-hydrogen energy conversion efficiency.

Details

Title
Integrated halide perovskite photoelectrochemical cells with solar-driven water-splitting efficiency of 20.8%
Author
Fehr, Austin M. K. 1 ; Agrawal, Ayush 1   VIAFID ORCID Logo  ; Mandani, Faiz 1 ; Conrad, Christian L. 1   VIAFID ORCID Logo  ; Jiang, Qi 2 ; Park, So Yeon 2 ; Alley, Olivia 3 ; Li, Bor 4   VIAFID ORCID Logo  ; Sidhik, Siraj 5 ; Metcalf, Isaac 5 ; Botello, Christopher 1 ; Young, James L. 2   VIAFID ORCID Logo  ; Even, Jacky 6   VIAFID ORCID Logo  ; Blancon, Jean Christophe 1   VIAFID ORCID Logo  ; Deutsch, Todd G. 2   VIAFID ORCID Logo  ; Zhu, Kai 2   VIAFID ORCID Logo  ; Albrecht, Steve 4 ; Toma, Francesca M. 3   VIAFID ORCID Logo  ; Wong, Michael 1   VIAFID ORCID Logo  ; Mohite, Aditya D. 7   VIAFID ORCID Logo 

 Rice University, Department of Chemical and Biomolecular Engineering, Houston, USA (GRID:grid.21940.3e) (ISNI:0000 0004 1936 8278) 
 National Renewable Energy Laboratory, Chemistry and Nanoscience Center, Golden, USA (GRID:grid.419357.d) (ISNI:0000 0001 2199 3636) 
 Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551) 
 Helmholtz-Zentrum Berlin, Young Investigator Group Perovskite Tandem Solar Cells, Berlin, Germany (GRID:grid.424048.e) (ISNI:0000 0001 1090 3682) 
 Rice University, Material Science and Nanoengineering, Houston, USA (GRID:grid.21940.3e) (ISNI:0000 0004 1936 8278) 
 Univ Rennes, INSA Rennes, CNRS, Institut FOTON, UMR 6082, Rennes, France (GRID:grid.410368.8) (ISNI:0000 0001 2191 9284) 
 Rice University, Department of Chemical and Biomolecular Engineering, Houston, USA (GRID:grid.21940.3e) (ISNI:0000 0004 1936 8278); Rice University, Material Science and Nanoengineering, Houston, USA (GRID:grid.21940.3e) (ISNI:0000 0004 1936 8278) 
Pages
3797
Publication year
2023
Publication date
2023
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829615809
Copyright
© The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.