Full text

Turn on search term navigation

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Corn smut fungus (Ustilago maydis [DC.] Corda) is a globally widespread pathogen affecting both forage and sweet maize hybrids, with higher significance in sweet maize. Remote sensing technologies demonstrated favorable results for disease monitoring on the field scale. The study focused on the changes in vegetation index (VI) values influenced by the pathogen. In this study, four hybrids, two forage maize and two sweet maize hybrids were examined. Artificial infection was carried out at three different doses: a low (2500 sporidium number/mL), medium (5000 sporidium number/mL) and high dose (10,000 sporidium number/mL) with a non-infected control plot for each hybrid. The experimental plots were monitored using a multispectral UAV sensor of five monochrome channels on three different dates, i.e., 7, 14 and 21 days after infection. Five different indices (NDVI, GNDVI, ENDVI, LCI, and NDRE) were determined in Quantum GIS 3.20. The obtained results demonstrated that the infection had a significant effect on the VI values in sweet maize hybrids. A high-dose infection in the Dessert R 73 hybrid resulted in significantly lower values compared to the non-infected hybrids in three indices (NDVI, LCI and GNDVI). In the case of the NOA hybrids, GNDVI and ENDVI were able to show significant differences between the values of the infection levels.

Details

Title
Investigation of the Detectability of Corn Smut Fungus (Ustilago maydis DC. Corda) Infection Based on UAV Multispectral Technology
Author
Radócz, László 1 ; Szabó, Atala 1   VIAFID ORCID Logo  ; András Tamás 1   VIAFID ORCID Logo  ; Illés, Árpád 1   VIAFID ORCID Logo  ; Bojtor, Csaba 1   VIAFID ORCID Logo  ; Ragán, Péter 1   VIAFID ORCID Logo  ; Vad, Attila 2 ; Széles, Adrienn 1   VIAFID ORCID Logo  ; Harsányi, Endre 1 

 Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, H-4032 Debrecen, Hungary[email protected] (A.S.); 
 Institutes for Agricultural Research and Educational Farm (IAREF), Farm and Regional Research Institutes of Debrecen (RID), Experimental Station of Látókép, University of Debrecen, H-4032 Debrecen, Hungary 
First page
1499
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829695064
Copyright
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.