Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In scenes where there are lighting changes, localization may fail for visual SLAM due to feature point tracking failure. Thus, a feature point tracking method based on multi-condition constraints is proposed for visual SLAM. The proposed method tracks the feature points of optical flow from aspects such as the overall motion position of feature points, descriptor grayscale information, and spatial geometric constraints. First, to solve the problem of feature point mismatch in complex environments, we propose a feature point mismatch removal method that combines optical flow, descriptor, and RANSAC. We eliminate incorrect feature point matches layer by layer through these constraints. The uniformity of feature point distribution in the image can then affect the accuracy of camera pose estimation, and different scenes can also affect the difficulty of feature point extraction. In order to balance the quality and uniformity of the extracted feature points, we propose an adaptive mask homogenization method that adaptively adjusts the mask radius according to the quality of feature points. Experiments conducted on the EuRoC dataset show that the proposed method which integrates the improved feature point mismatch removal method and mask homogenization method into feature point tracking, exhibits robustness and accuracy under various interferences such as lighting changes, image blurring, and unclear textures. Compared to the RANSAC method, we reduce the location error by about 85% using the EuRoC dataset.

Details

Title
Feature Point Tracking Method for Visual SLAM Based on Multi-Condition Constraints in Light Changing Environment
Author
Wu, Zibin 1   VIAFID ORCID Logo  ; Li, Deping 2   VIAFID ORCID Logo  ; Li, Chuangding 1 ; Chen, Yanyu 3 ; Li, Shaobin 4 

 College of Information Science and Technology, Jinan University, Guangzhou 510632, China[email protected] (C.L.) 
 School of intelligent Systems Science and Engineering, Jinan University, Zhuhai 519070, China 
 Big Data Centers, Gree Electric Appliances, Inc. of Zhuhai, Zhuhai 519000, China 
 Data Science Research Institute, City University of Macau, Macau 999078, China 
First page
7027
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829707685
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.