Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Almost all patients with glioblastoma (GBM) eventually relapse, mainly due to adaptive and acquired resistance that results from tumour heterogeneity and its relatively immune-depleted (“cold”) microenvironment. High levels of programmed death ligand-1 (PD-L1) have been associated with GBM invasiveness and immuno-resistance. Presently, there is no standardised approach for the assessment of PD-L1 expression level that would help in predicting the response to immune checkpoint inhibitors. Therefore, we investigated the ability of a radiolabelled ZPD-L1 affibody molecule to measure the expression level of PD-L1 in GBM xenograft models.

Abstract

There is no established method to assess the PD-L1 expression in brain tumours. Therefore, we investigated the suitability of affibody molecule (ZPD-L1) radiolabelled with F-18 (Al18F) and Ga-68 to measure the expression of PD-L1 in xenograft mouse models of GBM. Mice bearing subcutaneous and orthotopic tumours were imaged 1 h post-radioconjugate administration. Ex vivo biodistribution studies and immunohistochemistry (IHC) staining were performed. Tumoural PD-L1 expression and CD4+/CD8+ tumour-infiltrating lymphocytes were evaluated in human GBM specimens. ZPD-L1 was radiolabelled with radiochemical yields of 32.2 ± 4.4% (F-18) and 73.3 ± 1.8% (Ga-68). The cell-associated radioactivity in vitro was consistent with PD-L1 expression levels assessed with flow cytometry. In vivo imaging demonstrated that 18F-AlF-NOTA-ZPD-L1 can distinguish between PD-L1 high-expressing tumours (U87-MGvIII) and PD-L1-negative ones (H292PD-L1Ko). The radioconjugate was quickly cleared from the blood and normal tissues, allowing for high-contrast images of brain tumours as early as 1 h post-injection. 68Ga-NOTA-ZPD-L1 showed heterogeneous and diffuse accumulation that corresponded to the extensively infiltrating GCGR-E55 tumours involving contiguous lobes of the brain. Lastly, 39% of analysed GBM patient samples showed PD-L1+ staining of tumour cells that was associated with elevated levels of CD4+ and CD8+ lymphocytes. Our results suggest that the investigated radioconjugates are very promising agents with the potential to facilitate the future design of treatment regimens for GBM patients.

Details

Title
Immuno-PET Imaging of Tumour PD-L1 Expression in Glioblastoma
Author
Sharma, Gitanjali 1 ; Braga, Marta C 1   VIAFID ORCID Logo  ; Chiara Da Pieve 1 ; Szopa, Wojciech 2 ; Starzetz, Tatjana 3 ; Plate, Karl H 3 ; Kaspera, Wojciech 2   VIAFID ORCID Logo  ; Kramer-Marek, Gabriela 1   VIAFID ORCID Logo 

 Division of Radiotherapy and Imaging, Institute of Cancer Research, London SW7 3RP, UK 
 Department of Neurosurgery, Medical University of Silesia, 41-200 Sosnowiec, Poland 
 Edinger Institute, Institute of Neurology, 60528 Frankfurt, Germany; German Consortium for Translational Cancer Research, DKTK, 69120 Heidelberg, Germany 
First page
3131
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829780681
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.