Full Text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cardiovascular self-organized criticality has recently been demonstrated. We studied a model of autonomic nervous system changes to better characterize heart rate variability self-organized criticality. The model included short and long-term autonomic changes associated with body position and physical training, respectively. Twelve professional soccer players took part in a 5-week training session divided into “Warm-up”, “Intensive”, and “Tapering” periods. A stand test was carried out at the beginning and end of each period. Heart rate variability was recorded beat by beat (Polar Team 2). Bradycardias, defined as successive heart rates with a decreasing value, were counted according to their length in number of heartbeat intervals. We checked whether bradycardias were distributed according to Zipf’s law, a feature of self-organized criticality. Zipf’s law draws a straight line when the rank of occurrence is plotted against the frequency of occurrence in a log–log graph. Bradycardias were distributed according to Zipf’s law, regardless of body position or training. Bradycardias were much longer in the standing position than the supine position and Zipf’s law was broken after a delay of four heartbeat intervals. Zipf’s law could also be broken in some subjects with curved long bradycardia distributions by training. Zipf’s law confirms the self-organized nature of heart rate variability and is strongly linked to autonomic standing adjustment. However, Zipf’s law could be broken, the significance of which remains unclear.

Details

Title
Autonomic Nervous System Influences on Cardiovascular Self-Organized Criticality
Author
Jacques-Olivier Fortrat 1   VIAFID ORCID Logo  ; Ravé, Guillaume 2 

 CHU Angers, Médecine Vasculaire, INSERM, CNRS, MITOVASC, Equipe CarMe, SFR ICAT, Université d’Angers, 49933 Angers, France 
 Toulouse Football Club, 1 Allée Gabriel Biénès, 31400 Toulouse, France; [email protected] 
First page
880
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829795476
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.