Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The paper studies a novel method for real-time solutions of the two-player pursuit-evasion game. The min-max principle is adopted to confirm the Nash equilibrium of the game. As agents in the game can form an Internet of Things (IoT) system, the real-time control law of each agent is obtained by taking a linear-quadratic cost function in adaptive dynamic programming. By introducing the Lyapunov function, we consider the scenario when capture occurs. Since most actual systems are continuous, the policy iteration algorithm is used to make the real-time policy converge to the analytical solution of the Nash equilibrium. Furthermore, we employ the value function approximation method to calculate the neural network parameters without directly solving the Hamilton–Jacobi–Isaacs equation. Simulation results depict the method’s feasibility in different scenarios of the pursuit-evasion game.

Details

Title
Solution for Pursuit-Evasion Game of Agents by Adaptive Dynamic Programming
Author
Gong, Zifeng; He, Bing; Liu, Gang; Zhang, Xiaobo  VIAFID ORCID Logo 
First page
2595
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829796580
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.