Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Constructing optical nanoprobes with superior performance is highly desirable for sensitive and accurate assays. Herein, we develop a facile room-temperature strategy for the fabrication of green emissive carbon nanoclusters (CNCs) with dual-exciting centers for the dual-channel sensing of hemin. The formation of the CNCs is attributed to the crosslinking polymerization of the precursors driven by the Schiff base reaction between ethylenediamine and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Most importantly, the proposed CNCs have a unique excitation-independent green emission (518 nm) with two excitation centers at 260 nm (channel 1) and 410 nm (channel 2). The dual-exciting central emission can serve as dual-channel fluorescence (FL) signals for highly sensitive and reliable detection of hemin based on the inner filter effect. Because of the great spectral overlap difference between the absorption spectrum of hemin and the excitation lights of the CNCs in the two channels, hemin has a different quenching effect on FL emission from different channels. The dual-channel signals of the CNCs can detect hemin in the range of 0.075–10 μM (channel 1) and 0.25–10 μM (channel 2), respectively. These findings not only offer new guidance for the facile synthesis of dual-exciting central CNCs but also establish a reliable sensing platform for the analysis of hemin in complex matrixes.

Details

Title
Dual-Exciting Central Carbon Nanoclusters for the Dual-Channel Detection of Hemin
Author
Ya-Ting Gao 1 ; Chang, Shuai 1 ; Bin-Bin, Chen 2   VIAFID ORCID Logo  ; Da-Wei, Li 1 

 Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; [email protected] (Y.-T.G.); [email protected] (S.C.) 
 Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China; [email protected] (Y.-T.G.); [email protected] (S.C.); School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen 518172, China 
First page
226
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
23046740
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829811849
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.