Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Thirty-three 1,3-dihydro-2H-indolin-2-one derivatives bearing α, β-unsaturated ketones were designed and synthesized via the Knoevenagel condensation reaction. The cytotoxicity, in vitro anti-inflammatory ability, and in vitro COX-2 inhibitory activity of all the compounds were evaluated. Compounds 4a, 4e, 4i-4j, and 9d exhibited weak cytotoxicity and different degrees of inhibition against NO production in LPS-stimulated RAW 264.7 cells. The IC50 values of compounds 4a, 4i, and 4j were 17.81 ± 1.86 μM, 20.41 ± 1.61 μM, and 16.31 ± 0.35 μM, respectively. Compounds 4e and 9d showed better anti-inflammatory activity with IC50 values of 13.51 ± 0.48 μM and 10.03 ± 0.27 μM, respectively, which were lower than those of the positive control ammonium pyrrolidinedithiocarbamate (PDTC). Compounds 4e, 9h, and 9i showed good COX-2 inhibitory activities with IC50 values of 2.35 ± 0.04 µM, 2.422 ± 0.10 µM and 3.34 ± 0.05 µM, respectively. Moreover, the possible mechanism by which COX-2 recognized 4e, 9h, and 9i was predicted by molecular docking. The results of this research suggested that compounds 4e, 9h, and 9i might be new anti-inflammatory lead compounds for further optimization and evaluation.

Details

Title
Design, Synthesis, and Evaluation of the COX-2 Inhibitory Activities of New 1,3-Dihydro-2H-indolin-2-one Derivatives
Author
Pan, Taohua 1 ; He, Maofei 2   VIAFID ORCID Logo  ; Deng, Lulu 2 ; Jiang, Li 2 ; Fan, Yanhua 2   VIAFID ORCID Logo  ; Hao, Xiaojiang 3 ; Mu, Shuzhen 2 

 College of Pharmacy, Guizhou University, Guiyang 550025, China 
 State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China; The Key Laboratory of Chemistry for Natural Products of Guizhou Province, Chinese Academy of Sciences, Guiyang 550014, China 
 Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming 650201, China 
First page
4668
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829852505
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.