Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Hydrogels are very attractive materials due to their multifunctional properties. Many natural polymers, such as polysaccharides, are used for the preparation of hydrogels. The most important and commonly used polysaccharide is alginate because of its biodegradability, biocompatibility, and non-toxicity. Since the properties of alginate hydrogel and its application depend on numerous factors, this study aimed to optimize the gel composition to enable the growth of inoculated cyanobacterial crusts for suppressing the desertification process. The influence of alginate concentration (0.1–2.9%, m/v) and CaCl2 concentration (0.4–4.6%, m/v) on the water-retaining capacity was analyzed using the response surface methodology. According to the design matrix, 13 formulations of different compositions were prepared. The water-retaining capacity was defined as the system response maximized in optimization studies. The optimal composition of hydrogel with a water-retaining capacity of about 76% was obtained using 2.7% (m/v) alginate solution and 0.9% (m/v) CaCl2 solution. Fourier transform infrared spectroscopy was used for the structural characterization of the prepared hydrogels, while the water content and swelling ratio of hydrogels were determined using gravimetric methods. It was concluded that alginate and CaCl2 concentrations play the most important role regarding the gelation time, homogeneity, water content, and swelling ratio of the hydrogel.

Details

Title
Preparation and Characterization of Alginate Hydrogels with High Water-Retaining Capacity
Author
Ivana M Savić Gajić 1   VIAFID ORCID Logo  ; Savić, Ivan M 1   VIAFID ORCID Logo  ; Svirčev, Zorica 2 

 Faculty of Technology in Leskovac, University of Nis, Bulevar Oslobodjenja 124, 16000 Leskovac, Serbia; [email protected] 
 Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia; Faculty of Science and Engineering, Biochemistry, Åbo Akademi University, Tykistökatu 6A, 20520 Turku, Finland 
First page
2592
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
20734360
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829853249
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.