Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The synthesis, characterization, and anticancer properties of three imine-type compounds 13 and an unexpected oxazine derivative 4 are presented. The reaction of p-dimethylaminobenzaldehyde or m-nitrobenzaldehyde with hydroxylamine hydrochloride afforded the corresponding oximes 12 in good yields. Additionally, the treatment of benzil with 4-aminoantipyrine or o-aminophenol was investigated. Routinely, the Schiff base (4E)-4-(2-oxo-1,2-diphenylethylideneamino)-1,2-dihydro-1,5-dimethyl-2-phenylpyrazol-3-one 3 was obtained in the case of 4-aminoantipyrine. Unexpectedly, the reaction of benzil with o-aminophenol proceeded with cyclization to produce the 2,3-diphenyl-2H-benzo[b][1,4]oxazin-2-ol 4. The structures of compounds 3 and 4 were unambiguously determined by single crystal X-ray diffraction. Hirshfeld analysis of molecular packing revealed the importance of the O…H (11.1%), N…H (3.4%), C…H (29.4%), and C…C (1.6) interactions in the crystal stability of 3. In the case of 4, the O…H (8.8%), N…H (5.7%), and C…H (30.3%) interactions are the most important. DFT calculations predicted that both compounds have a polar nature, and 3 (3.4489 Debye) has higher polarity than 4 (2.1554 Debye). Different reactivity descriptors were calculated for both systems based on the HOMO and LUMO energies. The NMR chemical shifts were calculated and were found well correlated with the experimental data. HepG2 growth was suppressed by the four compounds more than MCF-7. The IC50 values of 1 against HepG2 and MCF-7 cell lines were the lowest, and it is considered the most promising candidate as an anticancer agent.

Details

Title
Synthesis, Crystal Structure, DFT, and Anticancer Activity of Some Imine-Type Compounds via Routine Schiff Base Reaction: An Example of Unexpected Cyclization to Oxazine Derivative
Author
Lasri, Jamal 1   VIAFID ORCID Logo  ; Eltayeb, Naser E 1   VIAFID ORCID Logo  ; Soliman, Saied M 2 ; Ali, Ehab M M 3   VIAFID ORCID Logo  ; Sultan Alhayyani 1   VIAFID ORCID Logo  ; Akhdhar, Abdullah 4 

 Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, P.O. Box 344, Jeddah 21589, Saudi Arabia 
 Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, Alexandria 21321, Egypt 
 Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia 
 Department of Chemistry, College of Science, University of Jeddah, Jeddah 21959, Saudi Arabia 
First page
4766
Publication year
2023
Publication date
2023
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829853589
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.