Full text

Turn on search term navigation

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Early detection and evaluation of children at risk of neurodevelopmental disorders and/or communication deficits is critical. While the current literature indicates a high prevalence of neurodevelopmental disorders, many children remain undiagnosed, resulting in missed opportunities for effective interventions that could have had a greater impact if administered earlier. Clinicians face a variety of complications during neurodevelopmental disorders’ evaluation procedures and must elevate their use of digital tools to aid in early detection efficiently. Artificial intelligence enables novelty in taking decisions, classification, and diagnosis. The current research investigates the efficacy of various machine learning approaches on the biometric SmartSpeech datasets. These datasets come from a new innovative system that includes a serious game which gathers children’s responses to specifically designed speech and language activities and their manifestations, intending to assist during the clinical evaluation of neurodevelopmental disorders. The machine learning approaches were used by utilizing the algorithms Radial Basis Function, Neural Network, Deep Learning Neural Networks, and a variation of Grammatical Evolution (GenClass). The most significant results show improved accuracy (%) when using the eye tracking dataset; more specifically: (i) for the class Disorder with GenClass (92.83%), (ii) for the class Autism Spectrum Disorders with Deep Learning Neural Networks layer 4 (86.33%), (iii) for the class Attention Deficit Hyperactivity Disorder with Deep Learning Neural Networks layer 4 (87.44%), (iv) for the class Intellectual Disability with GenClass (86.93%), (v) for the class Specific Learning Disorder with GenClass (88.88%), and (vi) for the class Communication Disorders with GenClass (88.70%). Overall, the results indicated GenClass to be nearly the top competitor, opening up additional probes for future studies toward automatically classifying and assisting clinical assessments for children with neurodevelopmental disorders.

Details

Title
Employing Classification Techniques on SmartSpeech Biometric Data towards Identification of Neurodevelopmental Disorders
Author
Toki, Eugenia I 1 ; Tatsis, Giorgos 2   VIAFID ORCID Logo  ; Tatsis, Vasileios A 3 ; Plachouras, Konstantinos 4 ; Pange, Jenny 5   VIAFID ORCID Logo  ; Tsoulos, Ioannis G 6 

 Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; Laboratory of New Technologies and Distance Learning, Department of Early Childhood Education, School of Education, University of Ioannina, 45110 Ioannina, Greece 
 Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; Physics Department, University of Ioannina, 45110 Ioannina, Greece 
 Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; Department of Computer Science & Engineering, University of Ioannina, 45110 Ioannina, Greece 
 Department of Speech and Language Therapy, School of Health Sciences, University of Ioannina, 45500 Ioannina, Greece 
 Laboratory of New Technologies and Distance Learning, Department of Early Childhood Education, School of Education, University of Ioannina, 45110 Ioannina, Greece 
 Department of Informatics and Telecommunications, University of Ioannina, 47150 Kostaki Artas, Greece 
First page
401
Publication year
2023
Publication date
2023
Publisher
MDPI AG
ISSN
26246120
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2829870488
Copyright
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.